
Uasm Object Oriented Language Extension

User Guide

Introduction

Uasm introduces a set of language extensions made available through the built-in Macro Library

System. One of these extensions is the ability to implement Object Orientation in Assembler Code.

The approach is slightly different from traditional OO in that it doesn’t make use of inheritance but

provides the concept of an interface which can be mapped to homogenous or even heterogeneous

classes as long as they conform to the interface’s layout.

As with C++ it is good practice to keep each class definition in its own file and the implementation in

another. This keeps code clean, modular and allows different modules to share the definition of the

class and any related types.

The OO library can be used as-is on Windows platforms and can be used on Linux / OSX with one

caveat:

To provide memory allocation routines (and the implementation of MEMALLOC, MEMFREE macros) it

is assumed that you have linked to libc and provided prototypes for malloc and free. As neither Linux

nor OSX provide heap allocation routines as found on Windows libc’s malloc/free are used instead.

• See LIN64_2 example in the Samples folder.

Declaring a Class

IFNDEF _CLASS_PERSON_
_CLASS_PERSON_ EQU 1

CLASS Person
 CMETHOD GetName

 CMETHOD SetName

 CSTATIC IsHuman
 fname db 128 DUP (?)

 age db 0

 human db 0
ENDCLASS

pPerson TYPEDEF PTR Person

ENDIF

As with C++ you should implement an inclusion guard in your class definition file through the use of

IFNDEF.

A class is simply declared as CLASS <name> and ENDCLASS.

The class data shares a lot in common with a simple structure data type and thus allows member fields

to be specified directly in the class definition.

Methods are purely named at this point using either CMETHOD (Instance method) or CSTATIC (Static

method).

It is often useful to also define a pointer to object type such as pPerson in this case.

The class will automatically create 4 QWORD sized entries at the start of the structure for the

constructor, destructor, release method and reference count.

In addition the class directive creates a static copy of the object structure. This is used to store static

elements as well as provide a means to directly invoke methods without going through a vtable.

Each CMETHOD or CSTATIC entry creates not only the correct types, prototypes on the object but

creates a relevant vtable entry for when the class is actually instantiated.

Implementing the Class

Implementation of Init (Constructor), Destroy (Destructor) methods is mandatory.

; Constructor -> Can take optional arguments.

;---

METHOD Person, Init, <USES rbx>, age:BYTE

 LOCAL isAlive:DWORD
 ; Internally the METHOD forms a traditional procedure, so anything that you can

 ; do in a PROC you can do in a method.

 ; On entry into any method RCX is a pointer to the instance

 ; and the correct reference type is assumed.

 mov [rcx].human, 1 ; Hence this is possible.

 mov (Person PTR [rcx]).human, 1 ; Alternative forms of reference.

 mov [rcx].Person.human, 1 ; " "

 mov isAlive,0
 mov al,age

 mov [rcx].age,al

 .if(age < 100)

 mov isAlive,1

 .endif

; Constructor MUST return thisPtr in rax (the implicit self reference

; passed in RCX).

 mov rax,thisPtr

 ret

ENDMETHOD

; Destructor -> Takes no arguments.

;---

METHOD Person, Destroy, <>
 mov [rcx].age,0

 ret

ENDMETHOD

; Return pointer to name.

;---

METHOD Person, GetName, <>

 lea rax,[rcx].fname
 ret

ENDMETHOD

; Set person name.

;---

METHOD Person, SetName, <USES rbx>, pNameStr:QWORD

 lea rsi,pNameStr

 lea rdi,[rcx].fname

copyname:

 mov al,[rsi]

 mov [rdi],al
 .if(al == 0)

 jmp done

 .endif
 inc rsi

 inc rdi

 jmp short copyname

done:

 ret

ENDMETHOD

; Static method to check if a person is a human.

;---

STATICMETHOD Person, IsHuman, <>, somebody:PTR Person

 mov rax,somebody

 mov al,(Person PTR [rax]).human

 ret
ENDMETHOD

Methods take an option USES clauses, which can be left empty with <>.

This maps directly to the generated backing PROC.

Be aware that under Windows 64bit calling convention, thisPtr is passed in RCX, while under

SYSTEMV thisPtr will be supplied in RDI. This can be made platform-agnostic by using the built-in

variable @Platform as described in the extended user guide.

Declaring and Instantiating Objects

Objects are instantiated via the use of either the _NEW or _RBXNEW directives. Both can be in-lined

into other expressions, statements and invokes.

 local myPerson:PTR Person

 local age:BYTE

 mov age,36

 mov r10,_RBXNEW(Person, 10)

 _DELETE(r10)

 mov myPerson,_NEW(Person, age)

 _DELETE(myPerson)

Instances can be delete via _DELETE. For most basic uses simple LOCAL or GLOBAL variables can be

used to store pointers to object instances.

To declare an array of objects you can additionally use :

mov rbx,_ARRAY(Person,8)

_DELETEARRAY rbx

This will attempt to create an array of references (pointers) to the objects, or for primitive types and

normal structures a fully sized array in memory.

An alternative directive to LOCAL is supplied that supports < > in names. Technically this makes no

difference in the code that is generated, however due to the assemblers parsing of quoted and

literal text in macros it allows us to “simulate” higher level generic types in names, for example:

_DECLARE objArray[8], PTR Person

_DECLARE myList, PTR List<Float>

CLASS List<Float>
; Any class which has the same methods/parameters/ordinal is said to conform to an

interface. Methods can be invoked via the interface to enable RT-Polymorphism.

 CMETHOD Items

 CMETHOD AddItem
 CMETHOD RemoveItem

 CMETHOD Clear

 CMETHOD Trim
 CMETHOD Sort

 CMETHOD InsertItem

 Count dq 0
 Capacity dq 0

 CurIdx dq 0

 itemsPtr dq 0

 itemSize dq 0
 itemType db 0

ENDCLASS

METHOD List<Float>,Init, count:QWORD, itemSize:VARARG

 mov byte ptr [rcx].itemType,LIST_FLOAT

 mov rax,4
 mov [rcx].itemSize,rax

 .if(rdx > 0)

 mov [rcx].Capacity,rdx

 imul rax,count

 invoke HeapAlloc,_oo_heap,0,rax
 .if(rax == 0)

 THROW OUT_OF_MEMORY

 .endif
 mov rcx,thisPtr

 mov [rcx].itemsPtr,rax

 .endif

 mov rax,thisPtr
 ret

ENDMETHOD

Debugging

Debugging support is implicit due to all methods and members being fully typed, arguments are

visible inside methods and entire object instances can be examined:

Invoking Methods

A number of accelerator macros are provide to call methods either directly, indirectly via their vtable

entry or inline in other invokes including specified return types:

; Direct invoke (via the generated structure type):

_INVOKE List<String>,AddItem,myList,myString

; Indirect invoke via the object instance vtable:

_VINVOKE myString,String,Trim, FALSE

; Direct, with in-line direct _I call

_INVOKE String,ToLower,_I(List<String>,Items,myList,0),FALSE

_V, _VF, _VD, _VW, _VB are also provided to provide in-line vtable invocations that

return a result of the specified type : V == QWORD, VF == float/real, VD == DWORD, VW

== WORD, VB == BYTE.

Interfaces

An interface is effectively a generic contract, which can be applied to invoke methods and access

members of unrelated object instances as long as they conform.

An example of this in action is combined with < > support to implement a range generic container

class types for List<int>, List<float>, List<double>.

By creating an IList interface we can access any of these types in a consistent manner.

OINTERFACE IList ; Common Container Protocol/Interface.

 CVIRTUAL Items, idx:QWORD

 CVIRTUAL AddItem, objPtr:QWORD
 CVIRTUAL RemoveItem, idx:QWORD, release:BOOL

 CVIRTUAL Clear, release:BOOL

 CVIRTUAL Trim

 CVIRTUAL Sort
 CVIRTUAL InsertItem

ENDOINTERFACE

An interface definition begins with OINTERFACE <name> and ends with ENDOINTERFACE.

Common methods are declared with the CVIRTUAL specifier. Note however that virtual methods do

specify their arguments as these generate only prototypes and no actual code. This is to ensure type-

conformance.

The first entry on this particular interface and any classes which want to share this type specify an

Items method.

This is a special method, which allows for accelerator macros to be used to access any object which

implements some form of iterator (IE: a container).

For example on the specialisation class List<float> we have:

METHOD List<Float>,Items, idx:QWORD

 mov rax,[rcx].itemsPtr

 mov rbx,[rcx].Count
 .if(rdx < rbx)

 movss xmm0,[rax+rdx*4]

 .else
 THROW INDEX_OUT_OF_BOUNDS

 .endif

 ret
ENDMETHOD

Which will then allow other code to access its internal collection with:

; This protocol interface is purely to allow for acceleration of typeless calls to get

; items out of classes that need an iterator / [] access.

OINTERFACE Iterator ; Common Container Protocol/Interface.
 CVIRTUAL Items, idx:QWORD

ENDOINTERFACE

; The direct specific way:

mov rax,_V(myList,List<Float>,Items,0)

; The generic iterator interface way:

Mov rax,_ITEM(myList,0)

